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Abstract. We observe how many equilibrium problems obey a generalized complementarity con-
dition, which in general leads to a variational inequality. We illustrate this fact, by studying the
elastic–plastic torsion problem and finding the related Lagrange multipliers.
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1. Introduction: What does Optimality means?

The study of many equilibrium problems (The Obstacle Problem, the discrete
traffic equilibrium problem, the continuous traffic equilibrium problem, the spatial
price equilibrium problem, the migration problem, the Walras problem, etc. (see
[8], [9], [14])) has contributed to focus the fact that the equilibrium conditions
obey a form of generalized complementarity conditions whose meaning is that
when one of the factors is greater than zero, the other one must be zero.

Then one obtains the remarkable fact that different problems in different context
obey a unique law, which, in general, is far to correspond to the usual “obedience”
to be the minimum of a functional.

An open problem remains to see: how this set of generalized complementarity
conditions can be successfully treated? However, until now, each of the problems
above mentioned can be transformed in a Variational Inequality on a convex subset
� of a suitable functional space, for which we have an impressive quantity of
results in terms of existence, calculation of the solutions, stability and sensitivity
analysis.

Now the aim of this paper is to show how the possibility of transforming the
complementarity conditions in terms of Variational Inequality also happens for the
“Elastic-Plastic Torsion Problem”. The Lagrangean theory in the infinite dimen-
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sional case plays an extraordinary role in order to obtain the proof of the above
claims.

In the infinite dimensional context, following the suggestions of Borwein-Lewis
(see [1]), the introduction of a generalized Slater condition, that replaces the usual
one in the finite dimensional case, solves the delicate problem to have some kind
of “interior” of a set non-empty.

2. The Elastic-Plastic torsion model

We can say that the elastic–plastic torsion problem can be described in the follow-
ing way (Von Mises, 1949, as reported by Ting see [15]):

Find a function u�x� which vanishes on �� and, together with its first deriv-
atives, is continuous in �. The gradient of u must not have an absolute value
greater than a given constant k on �. Whenever the absolute value of �u is
smaller than k, the function umust satisfy the differential equation

	u=−2
��

where the positive constants 
 and � denote the shearing modulus and the
angle of twist per unit length, respectively.

3. Variational Inequality Formulation of the Elastic-Plastic Torsion
Problem

Let � be an open bounded Lipschitz domain with its boundary �� Let � be the
closed convex non empty subset of H 1

0 ����

�=
{
v∈H 1

0 ����v�0�
n∑
i=1

(
�u

�xi

)2

�1 a.e. in�

}
 (1)

Let a�u�v� be the bilinear form:

a�u�v�=∫
�

{
n∑

i�j=1

aij�x�
�u

�xi

�v

�xj
+

n∑
i=1

bi
�u

�xi
v+

n∑
i=1

ciu
�v

�xi
+duv+a0uv

}
dx (2)

with

aij ∈L����� bi∈Ln���� ci∈Ln��� if n>2

bi� ci∈L2+����� �>0 if n=2

d∈Ln+2��� if n>2� d∈L2+����� �>0 if n>2 (3)
n∑
ij=1

aij�i�j��
n∑
i=1

�2i ∀�∈�n�

a0>0 constant such that a�u�u����u�2
H1
0 ���
� �>0



VARIATIONAL ANALYSIS AND APPLICATIONS TO EQUILIBRIUM PROBLEMS 341

Then, for each f ∈L2���, the Variational Inequality:

“Find u∈� such that a�u�v−u��
∫
�
f �v−u�dx ∀v∈�" (4)

admits a unique solution. Moreover, under additional assumptions on the coeffi-
cients aij , e.g., aij ∈C1��� and on bi, ci� d� e.g., bi, ci� d∈L����, it is possible
to show that, if f �x�∈Lp���, p�2� the solution u to the Variational Inequality
(4) belongs toW 2�p��� and that, denoting by �u the operator such that

��u�v	=a�u�v�−
∫
�
f �x�v�x�dx� (5)

it results:

�u∈Lp���

(see [2]).
Then we can prove the following theorem.

THEOREM 1. Let u be the solution to the Variational Inequality (4). Then there
exist 
� !∈L2��� such that a. e. in�


�x�u�x�=0� !�x�

(
1−

n∑
i=1

(
�u�x�

�xi

)2
)
=0�

�u�x�−
�x�=2
n∑
i=1

�

�xi

(
!�x�

�u�x�

�xi

)


Moreover, it results:




��u�x�−
�x��
(
1−∑n

i=1

(
�u�x�

�xi

)2
)
=0

u�x��0

1−∑n
i=1

(
�u�x�

�xi

)2

�0

The above result can be compared with the results by [14] and [13], whereas equi-
valence results with respect to the Variational Inequality depending on "�x�=
d�x���� can be found in [4, 6, 7, 10–12].
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4. Proof of theorems

Let u be the unique solution to the Variational Inequality (4) and let us consider the
Lagrangean function:

��v�
�!�=#�v�−
∫
�

�x�v�x�dx−

∫
�
!�x�

(
1−

n∑
i=1

(
�u�x�

�xi

)2
)
dx (6)

where

#�v�=��u�v−u	 v∈H 1
0 ����

�
�!�∈�∗={�
�!� � 
∈L2���� !∈L2���� 
�x��!�x��0 a. e. in�
}
 (7)

Now let us observe that the set:

C=$v∈Lp���� v�x��0 a. e. in�%

has an empty interior; so that the Slater constraint qualification cannot be applied.
Following a suggestion by Borwein–Lewis (see [1]), it is possible to overcome

this difficulty replacing the Slater qualification condition by generalizing the notion
of relative interior as follows:

DEFINITION 1. The quasi relative interior of a convex set C, which we denote
by qri C, is the set of those x for which

Cl Cone �C−x� (8)

is a subspace.

We have:

Cone �C−x�=$!y � !�0� y∈C−x%
and if C is starshaped with respect to x� it results

T�C�x�= Cl Cone �C−x�
Then the generalized condition is

qri C �=∅ (9)

and it results

qri �∗={�!�
�∈L2���� !�x�>0� 
�x�>0
}
�

qri� �=∅
Then the usual Lagrangean theory can be applied and we obtain this lemma (see
for instance [6]):
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LEMMA 1. There exists �
�!�∈�∗ such that

��u�
�!����u�
�!� ∀v∈H 1
0 ��� (10)

��v�
�!����u�
�!� ∀�!�
�∈�∗ (11)

and ��u�
�!�=0� i. e.

#�u�=0�
∫
�
u�x�
�x�dx=0�

∫
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(
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)2
)
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(
�u�x�

�xi

)2

�0


�x��0� !�x��0� u�x��0�

we derive


�x�u�x�=0 a.e. in�� (12)

!�x�

(
1−

n∑
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(
�u�x�

�xi

)2
)
=0 a.e. in� (13)
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(
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�xi

)2

a.e. in� (14)

From (11), (12) and (14) we get
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�
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−
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Choosing v=u±# ∀#∈H 1
0 ���� we get
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Then considering the test functions � #� �>0 in both the inequalities and letting
� tend to zero, we get〈
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�xi

(
!
�u

�xi

)
�#

〉
�0 ∀#∈H 1

0 ���

〈
�u−
−2

n∑
i=1

�

�xi

(
!
�u

�xi

)
�#

〉
�0 ∀#∈H 1

0 ���

and hence

�u�x�−
�x�−2
n∑
i=1

�

�xi

(
!�x�

�u�x�

�xi

)
=0 a.e. in� (16)

Then the first part of theorem is proved (note that the term
n∑
i=1

�

�xi

(
!
�u

�xi

)
belongs

to L2���).
Now if we consider x∈E where
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{
x∈��
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(
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<1

}
�

from (13) we deduce, taking into account (16)
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and !�x� cannot be zero; hence in the same region it must be

x∈P=
{
x∈��

n∑
i=1

(
�u�x�

�xi

)2

=1

}
�

and we find that if u is the solution to the Variational Inequality (4), it results a.e.
in�:



��u�x�−
�x��
(
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i=1

(
�u�x�

�xi

)2
)
=0

u�x��0
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(
�u�x�

�xi

)2

�1

REMARK 1. It is easy to show that if u∈� and there exist ! and 
 as in theorem
1, then u verifies Variational Inequality (4).
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